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The determination of the stresses in a transparent body from the results of its transillumination [l] 

assumiog weak optical anisotropy [2,3] is considered. The side surface of the body is assumed to be 

free of loads. The phase difference and the isocline parameter [4] in a family of parallel planes are 

measured. From these investigations, from experimental data and the equations of equilibrium it is 

possible to determine only the component of the stress tensor cr, normal to the plane of trans- 

illumination [5,6]. 

THE PROBLEM of finding residual components is connected with the inverse problem of the 
theory of elasticity, the solution of which has been considered previously [S, 71 for the case of 
stresses caused by external loads. 

It is qualitatively an extremely complex problem to determine the internal stresses due to 
distortions. It is made somewhat easier for glass by the fact that in most cases the residual 
strains in it are spherical: & = $,, = e”, = aT, and can be characterized by a single parameter To, 
the effective temperature of the residual strains [MO]. The solution of the inverse problem of 
thermoelasticity in the case of plane strain (ax, =aYz = 0) enables the stress to be established 
completely [ll]. Its particular solution for round specimens leads to the sum law [l, 10, 121, 
which was proposed in 113,141 for finding the stress in the case of an arbitrary axisymmetrical 
distribution of the stress. 

In this paper we formulate the boundary-value problem for determining the internal temper- 
ature stresses in the volume from the results of its continuous transillumination in a system of 
parallel planes. The problem does not have a unique solution for body shapes and stresses of 
general form and hence the stress can only be partially established from the solution of this 
problem. In particular, in solids of revolution with an axisymmetrical temperature distribution 
a plane stress state is possible, for whose determination it is necessary to employ additional 
transillumination in the meridian plane. 

Note that in modern optical tomographs simultaneous transillumination is carried out using 
a wide beam, thereby enabling measurements to be made over a wide field [15]. 

1. In the case of weak optical anisotropy for transillumination in the x, y plane, one can 
measure two radiation integrals [2,4] along the beam I 

A (m, 19) = J (mirni ati - (J,,) dl, H(m, 0) = I mi Qiz dl, i, i = x,y 

Summation is carried out over repeated indices, m, is the component of the unit vector 
normal to the beam I, m, = cos0, my = sine, and m is the distance from the origin of coor- 
dinates to the straight line 1. 
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The value of the axial component of the stresses CF,, is found from the inversion of the linear 
combination of ray integrals [5,7] 

Here m, is one of the extreme points of the projection of the contour of the cross-section on 
to them axis. In addition, from the inversion of the ray integral 

one can determine do,,/&. Here yis the angle between the external normal n and the z axis, l? 
is the length of the arc of the contour of the cross-section, 4 and 4 are the points of entry and 
exit of the beam, respectively, and the quantities a,&), (T&J at the ends of the beam of the 
convex contour are found by means of tangential transillu~nation at these points from the 
values of the ray integral A (m, 6) and the boundary conditions. 

Hence, the use of the procedure of inversion of the Radon transformation (1.1) and (1.2) 
enables us to determine the value of the com~nent crzz and its partial derivatives with respect 
to 2 in the specimen. 

We will consider the problem of finding the residual components of the stress tensor for a 
distribution of a,, specified in the body ass~ing that the distortion is caused by the temper- 
ature, and we will therefore start from the Duhamel-Neumann relations [16] 

Here rp= 3Kcz(T-To) takes into account the effect of the temperature on the stress and on 
the residual strains, i.e. Tis the sum of the effective residual strain and the actual temperature 
of the specimen. 

We will represent the required stresses in the form of the sum of solutions of the first and 
second kind (normal rotations cl73 
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The resolving functions r, Q, N are defined by the equations 

a 
A4 r = - ---- CT,~ 

(1.3) 

(1.4) 

W) 
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m=o (1.7) 

((1.4) and (1.5) are the equations of equilibrium, and (1.6) are the Duhamel-Neumann 
relations). 

Eliminating w and Q from (1.5) and (1.6) we obtain a system of two resolving equations for r 
and @: (1.4) and 

which define the solutions of the first kind, and Laplace equations (1.7) for the potential of the 
normal rotation N. We note immediately that we have the following particular solution for Eq. 
(1.8) 

which reduces it to a homogeneous equation. The function $(x, y, 0) is found by solving the 
two-dimensional problem 

4% ky, 0) = (Jzr CTY, 0) (1.10) 

In the case of plane strain, relation (1.10) expresses the well-known sum law and, together with 
the boundary conditions, completely defines the stresses [ll]. 

The boundary-value problem with equations (1.4), (1.7) and (1.8) on a load-free surface is 
closed by three boundary conditions (ni are the components of the vector of the external 
normal). 

To conclude this general formulation of the problem we will consider the question of the 
uniqueness of its solution, i.e. the possibility that temperature stresses exist for which cr,, = 0. 
The necessary condition for the temperature for such states 

(1.11) 

is obtained by calculating the Laplace operator of both sides of Eq. (1.5), taking relation (1.8) 
into account. As follows from Eq. (1.5), r is a harmonic function of the variables x and y. If r 
depends only on z, it follows from (1.3) that relation (1.11) expresses the necessary condition 
for a plane-stress state to exist (cr,, = a,, = 6, = 0). Condition (1.11) was obtained previously in 
[16] for the last form of stress distribution, and specific examples of a plane-stress state due to 
temperature for certain body shapes were also given. The possibility that such solutions exist 
for an arbitrary shape is quite a complex problem and has not been considered in the 
literature. 

Hence, but virtue of the non-uniqueness of the solution of the problem formulated above, 
transillumination of the body in a system of parallel planes does not enable us to determine the 
stressed state completely. 

2. We will illustrate the above-mentioned features of the inverse problem of thermoelasticity for optical 
tomography using the example of the determination of the axisymmetrical stresses in solids of revolution. 
Confining ourselves to solutions of the fist kind (IV = 0), we will write the stresses in a cylindrical system 
of coordinates 
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(2.1) 

It follows from the condition for the problem to be axisymmetrical that r and Q, are independent of the 

angle cp, while om =ocL = 0. The resolving equation can be simplified to 

a* a” 1 a 
- 4pc(- +----) 6=a,-~ 
a? W P ap az 

(2.2) 

Expressing the quantity ,ocrpp in terms of &D/&z and Jr/&, by differentiating (2.2) with respect to p 
we can formulate the boundary-value problem for the component opp as follows: 

ar 
1 a a* wppp 
- - fP2 upp)] + r= 

aczz aa gzz a opz 
-+p ___ -J-- 

ap P ap ap aP 3Z 

a3 
--P- 

az3 
17, + 70 WI, 7, = j cp&, 2) df 

((rQ/r) is the above-mentioned arbitrary function). 
Hence, the problem of establishing crpp, o, in the volume from the known values of o;, and a, 

reduces to solving a boundary-value problem defined by partial differential equations (2.3) and the 
boundary conditions on the free side surface p = R(z) 

opp = jdz R(z)/dzf f ozz (2.4) 

The quantities oZl and btp in this case are related by Eq. (1.4), while the component a,, satisfies the 
condition of statics, namely, conservation of the principal force vector over the cross-section 

The components u,,, oB are established from the initial measurement data using inversion of the Abel 

integrals 

pdp=? ~H(n,z)dn-Afm,z) 
az m 

R qzt~) 

We will begin a general investigation of the boundary-value problem by considering a homogeneous 

equation, equating the right-hand side of (2.3) to zero. It is a standard equation of mathematical physics, 
obtained when solving Laplace’s equation for the angular harmonic cr(p, z)cosy,= pop@, z)cosrp. Such an 
equation arises, in particular, when a solid of revolution is twisted around an axis. Various methods of 
solving it have been developed in detail in problems of the twisting of shafts of variable cross-section, and 
the stress concentration which arises in this has been analysed. 

The presence on the right-hand side of Eq. (2.3) of an arbitrary function r,(z) confirms the fact that in 
solids of revolution a plane-stress state is possible which cannot be determined by the transill~ination 
method considered. Wi~out discussing all the various methods of solving the bounda~-value problem 
(2.3) and (2.4) we will consider the method of matched asymptotic expansions. The simplest asymptotic 
solution is obtained for elongated parts of a body with a slowly varying shape. In this case, the principal 
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term of the asymptotic expansion was found by solving the plane problem, i.e. on the left-hand side of Eq. 
(2.3) the derivative with respect to 2 is equated to zero. The solution of this equation can be expressed in 
the form of a sum 

of the particular solution of Eq. (2.3) 

Pu;p(P,z)=-; opz@,tW-pd TX +~~to,,(t,O)dt 
0 az PO 

(2.6) 

of the slowly varying function crO(z), found from the boundary condition (2.4) In view of the three- 

dimensional formulation of the problem, o,,(z) corresponds to the arbitrary function r(z) in (2.3), while 
(2.5) gives one of the possible solutions of the three-dimensional problem. 

Hence, the axisymmetrical stressed state in solids of revolution cannot be determined uniquely in the 
general case by transillumination in a system of planes orthogonal to the axis of revolution. The use of the 
sum law to determine the stresses is physically justified for sections having a smooth change in the surface 
and stresses along the axis of revolution, and corresponds to the zeroth approximation of the asymptotic 
solution. A more accurate asymptotic solution can be obtained using (2.5) and (2.6). If the above- 
mentioned conditions are not satisfied, to determine the stresses completely it is necessary to carry out an 
additional transillumination in the meridian plane. It can be shown that in this case the internal stresses 

are completely defined solely by the equations of equilibrium without having to make use of the 
Duhamel-Neumann relations. 
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